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1. Introduction and summary

Holographic descriptions of large Nc QCD-like theories have received a great deal of at-

tention recently (for a recent review see [1]). The models involve the physics of Nf flavor-

brane probes in near-horizon geometries of Nc color-branes. The Sakai-Sugimoto D4-D8-D8

model [2] in particular is very attractive in that it has a simple geometric description of chi-

ral symmetry breaking, and appears to be rich enough to incorporate, at least qualitatively,

all the low energy features of QCD. The properties of the mesons [2, 3] and baryons [4], the

resolution of the U(1)A problem [5], and the phase diagram at nonzero temperature [6, 7],

nonzero baryon chemical potential [8, 9], and nonzero isospin chemical potential [10], all

exhibit many similarities with QCD. While the original model had only massless quarks,

it can be generalized to nonzero quark mass [11].

The Sakai-Sugimoto model does not include a true electromagnetic gauge field, but we

can mimic the effect of one using the Abelian part of the flavor symmetry. In this paper we

will analyze the Sakai-Sugimoto model at finite temperature with an Abelian background

gauge field in the diagonal U(1)V part of the D8-D8 gauge group. This gauge field is

holographically dual to the baryon number current of the four-dimensional gauge theory.

Except for the one-flavor case, this is not the same as an electromagnetic field, since “up”

and “down” type quarks have the same charge. Nevertheless, we expect the physics to be

qualitatively similar to that of a background electromagnetic field. Background flavor gauge
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fields have been studied previously in the N = 2 supersymmetric theory corresponding to

7-brane probes in the 3-brane background [12 – 14].

We would like to determine the effect of the electric and magnetic fields on the phase

diagram of the theory and compute the response coefficients (susceptibilities or conductiv-

ities) of the different phases. We will do this by analyzing the 8-brane embeddings in the

presence of the appropriate background world-volume gauge field. The value of the 8-brane

action is identified in the usual way with the appropriate thermodynamic potential.

In the case of an electric field we find an insulator-conductor type transition, which in

the deconfined phase generalizes the chrial symmetry breaking-restoration transition at zero

field. The critical temperature decreases with the field. Since we use the DBI action, there

is a temperature-dependent maximal value of the electric field. However, the transition

to the conductor occurs at a smaller value of the field. We compute the conductivity

in the conducting phase and show that it agrees precisely, in the zero field limit, with

what is expected from the Kubo formula. This agreement extends to the nonzero density

case as well. Somewhat surprisingly, we also find an insulator-conductor transition in the

confined phase, where there is no chiral-symmetric phase. We propose that the conducting

phase corresponds to an embedding in which the 8-brane and anti-8-brane are geodesically

parallel and connect at a cusp at the “tip of the cigar”. We compute the conductivity of

this embedding and determine the phase diagram. The current in this case is carried by

baryons and anti-baryons.

With a magnetic field we observe that the critical temperature for chiral symmetry

restoration increases with the field, in agreement with expectations for QCD. We find that

the critical temperature approaches a finite value in the limit of infinite field, which differs

from the behavior in the N = 2 theory found in [13, 14].

The paper is organized as follows: In section 2 we review briefly the Sakai-Sugimoto

model and set up our conventions; sections 3 and 4 deal with, respectively, the physics of

background electric and magnetic fields.

2. Review of the Sakai-Sugimoto model

The model consists of Nc D4-branes in Type IIA string theory wrapping a circle with

anti-periodic boundary conditions for fermions, Nf D8-branes at a point on the circle, and

Nf anti-D8-branes at another point on the circle. At energies well below the Kaluza-Klein

scale the spectrum on the D4-branes is precisely that of massless four-dimensional “QCD”,

with Nc colors of gluons and Nf flavors of quarks. The holographic dual description

comes about by taking the large Nc limit, in which the D4-branes are replaced by their

near-horizon supergravity background. It is most convenient to work in units in which

the curvature radius is fixed to unity, R = (πgsNc)
1/3

√
α′ = 1. Taking x4 as the circle

direction, x4 ∼ x4 + 2πR4, the background is given by

ds2 = u
3

2

(

−dx2
0 + dx2 + f(u)dx2

4

)

+ u− 3

2

(

du2

f(u)
+ u2dΩ2

4

)

eΦ = gsu
3/4 , F4 = 3π(α′)3/2Nc dΩ4 , (2.1)
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where f(u) = 1 − (u3
KK/u3), and uKK = 4/(9R2

4). The (u, x4) subspace is topologically a

cigar (or disk), with a tip at u = uKK. In the dual gauge theory this ultimately implies

that the gluons are confined. The gravitational description is valid as long as λ ≫ R4,

where λ is the five-dimensional ’t Hooft coupling, which in our units is given by

λ = 4πgsNc

√
α′ =

4

α′
. (2.2)

The 8-branes and anti-8-branes are treated as probes in this background, and their

embedding determines the flavor physics in the dual gauge theory. Due to the topology

of the background the 8-branes and anti-8-branes must connect into a smooth U-shaped

configuration at some radial position u0 ≥ uKK (figure 1a). This reflects the spontaneous

breaking of the U(Nf )R × U(Nf )L chiral symmetry to the diagonal U(Nf )V . The form of

the embedding can be determined from the DBI action of the 8-branes in this background,

S = N
∫

d4x

∫

duu4

[

f(u)(x′
4(u))2 +

1

u3f(u)

]1/2

. (2.3)

The normalization constant is given by

N = 2NfV4Ω4T8 =
4NfV4

3(2π)6(α′)9/2gs
, (2.4)

where V4 is the volume of 4d spacetime, Ω4 is the volume of a unit 4-sphere, and T8 is the

8-brane tension. The factor of 2 corresponds to the two halves of the embedding (8-branes

and anti-8-branes) along u. The equation of motion for the embedding x4(u) gives

x′
4(u) =

1

u3/2f(u)

[

u8f(u)

u8
0f(u0)

− 1

]−1/2

. (2.5)

Therefore at large u

x4(u) ≈ L

2
− 2

9

c

u9/2
, (2.6)

where L is the asymptotic 8-brane-anti-8-brane separation,

L = 2

∫ ∞

u0

dux′
4(u) , (2.7)

and c is the constant of the motion associated with x4(u). This constant corresponds to

the curvature of the 8-brane, and is related to u0 by

c = u4
0

√

f(u0) . (2.8)

At nonzero temperature there are two possible backgrounds. For T < 1/(2πR4) the

dominant background is the Euclidean continuation of (2.1) with xE
0 ∼ xE

0 + 1/T . In this

background the 8-brane embedding is the same as above. The glue sector is therefore

confined, and chiral symmetry is broken. For T > 1/(2πR4) the dominant background is

given by (2.1), with the roles of x4 and xE
0 exchanged and with f(u) = 1− (u3

T /u3), where
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Figure 1: 8-brane embeddings and phases of the Sakai-Sugimoto model: (a) confined, broken

chiral symmetry (b) deconfined, broken chiral symmetry (c) deconfined, restored chiral symmetry

uT = (4πT/3)2. Here the (u, x4) subspace is topologically a cylinder, with a horizon at

u = uT , which in the dual gauge theory implies deconfinement. In this background there

are two possible 8-brane embeddings: a U-shaped embedding (figure 1b), that satisfies

x′
4(u) =

1

u3/2
√

f(u)

[

u8f(u)

u8
0f(u0)

− 1

]−1/2

, (2.9)

and a parallel 8-brane-anti-8-brane embedding with x′
4(u) = 0 (figure 1c). For T <

0.154/L the U embedding dominates and therefore chiral symmetry is broken, but when

T > 0.154/L the parallel embedding dominates and chiral symmetry is restored. The

intermediate phase of deconfinement and chiral symmetry breaking appears only when

this critical temperature is higher than the deconfinement temperature 1/(2πR4), namely

when L < 0.97R4. Both the confinement/deconfinement and chiral symmetry break-

ing/restoration transitions are first order.

The 8-brane curvature c is an order parameter for the chiral symmetry transition in

the deconfined phase: it vanishes in the chiral-symmetric parallel embedding, and is given

by (2.8) in the chiral symmetry breaking U embedding.1 By studying the dependence of L

on c one finds a turn-around behavior typical of a first order phase transition. This is easily

seen from the asymptotic behavior of L at small and large c (see figure 2 for a numerical

plot of L vs. c at a fixed temperature, and also [7]),

c → 0 (u0 → uT ) : L(c, T ) ∼ c/T 9

c → ∞ (u0 → ∞) : L(c, T ) ∼ c−1/8 .
(2.10)

This implies that there is a maximal value of the asymptotic separation Lmax, which de-

pends on T . For L < Lmax there are actually two U embedding solutions, and for L > Lmax

there are none. Alternatively, since L is a monotonically decreasing function of the tem-

perature, there is a maximal temperature Tmax at any fixed L. For T < Tmax there are

three solutions in all: the parallel embedding, and the two U embeddings. Evidently, one of

1This is not the usual chiral symmetry order parameter. The 8-brane curvature c is related to the

expectation value of a quark quadra-linear operator [15]. The usual chiral symmetry order parameter is the

quark bi-linear 〈q̄q〉, which is given by the normalizable mode of the flavor bi-fundamental scalar field [11].
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Figure 2: L vs. c for the U embedding in the deconfined phase (T = 0.14)

the U embeddings must be an unstable solution. At T = Tmax the unstable U embedding

merges with the stable one, and at higher temperatures the two disappear, leaving only the

parallel embedding. The transition from the stable U embedding to the parallel embedding

occurs at a temperature lower than Tmax.

3. Electric field

In this section we will study the response of the model to an external electric field E, by

turning on an appropriate background value for the Abelian gauge field component of the

unbroken U(Nf )V gauge field in the 8-brane worldvolume. We normalize this field as follows

Â =
1

Nf
TrA , (3.1)

where A is the U(Nf )V gauge field.2 Anticipating a current in the direction of the back-

ground field, we make the ansatz (in Euclidean space)

Â1(x0, u) = −iExE
0 + F (u) , (3.2)

where the u dependence encodes the current in the usual holographic fashion [12].

3.1 Deconfined phase

We begin in the deconfining background, which dominates when T > 1/(2πR4). The DBI

action for the 8-branes with the gauge field in (3.2) is given by

S = N
∫

duu4

√

(

f(u)(x′
4)

2 +
1

u3

)(

1 − e2

f(u)u3

)

+
f(u)(a′1)

2

u3
, (3.3)

where we have defined the dimensionless quantities a1 ≡ 2πα′Â1 and e ≡ 2πα′E. The

asymptotic behavior of the gauge field is given by

a1(x0, u) ∼ −iexE
0 − 2

3

j

u3/2
, (3.4)

2The canonical normalization is Â =
p

2/Nf TrA, but then the quarks carry 1/
p

2Nf units of charge.

In our normalization the kinetic term has an extra factor of 2Nf , but the quarks carry unit charge. This

normalization is more suitable to mimic an electromagnetic field.
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where j is the conserved charge associated with a1, namely the baryon number current.

The physical dimensionful current is given in our units by J = (2πα′N/V4)j. In terms of

the current the action becomes

S = N
∫

duu4

√

(

f(u)x′
4
2 +

1

u3

)(

f(u) − e2

u3

)(

f(u) − j2

u5

)−1

. (3.5)

This form of the action displays a generalization of the usual limiting electric field of the

flat space DBI action. For a vanishing current, the action is complex, and the embedding

is unphysical, if the second factor becomes negative anywhere in the integration region.

However this can be fixed by turning on a current such that the third factor changes sign

at the same point. This gives an equation relating the current and the electric field [12].

As in the zero field case there are two types of embedding. Consider first a U embedding

with a vanishing current, j = 0. The solution satisfies

x′
4(u) =

1

u3/2
√

f(u)





u8
(

f(u) − e2

u3

)

u8
0

(

f(u0) − e2

u3
0

) − 1





−1/2

, (3.6)

and the large u behavior is given by (2.6), with

c = u4
0

√

f(u0) −
e2

u3
0

. (3.7)

The action of this solution is given by

SU = N
∫ ∞

u0

duu5/2

√

1 − e2

u3f(u)



1 −
u8

0

(

f(u0) − e2

u3
0

)

u8
(

f(u) − e2

u3

)





−1/2

. (3.8)

The U embedding with j = 0 is always physical: since c is real, the solution satisfies

e2 ≤ u3
0f(u0), and the action is real. A current may be turned on, as long as j2 < u5

0f(u0),

but this increases the action, so the dominant U embedding has j = 0. In the gauge theory

this embedding therefore corresponds to a chiral-symmetry breaking, insulating phase.

In fact the U embedding satisfies an even tighter bound on the electric field than above.

As in the zero field case, at fixed values of e and T , there is a maximal value of L as a

function of c for the U embedding. Since L is a monotonically decreasing function of e, this

implies a maximal value of e as a function of c at fixed values of L and T . The maximal

value emax is attained at some c > 0, which, using (3.7), implies that e2
max < u3

0f(u0). For

e > emax there are no U embedding solutions, and we therefore expect a phase transition

to occur, at fixed T and L, at some value of e smaller than emax.

In the parallel embedding x′
4(u) = 0, and the action is given by

S|| = N
∫ ∞

uT

duu5/2

√

√

√

√

f(u) − e2

u3

f(u) − j2

u5

. (3.9)
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The numerator is negative for u3 < e2 + u3
T , which is always in the range of integration.

The only way to ensure a real action in this case is for the denominator to become negative

at the same u. This requires a nonzero current given by

j = e
(

e2 + u3
T

)1/3
. (3.10)

The parallel embedding therefore describes a chiral-symmetric conducting phase in the

gauge theory, and the conductivity is given by

σ =
J

E
=

(2πα′)2N
V4

(

e2 + u3
T

)1/3
=

NfNcλT 2

27π

(

1 + ẽ2
)1/3

, (3.11)

where we have defined a new dimensionless variable ẽ by

ẽ ≡ e

u
3/2
T

=
27

8π2

E

λT 3
. (3.12)

To determine which phase dominates as a function of the temperature and electric field

we should in principle compare the electric free energies of the two solutions, which are in

turn defined by the Euclidean 8-brane action of the solutions

Fe(L, e, T ) = TS[x4(u), a1(u), T ]EOM . (3.13)

However this is not quite right for the parallel embedding. First of all, the conducting

phase is not in equilibrium. There is a steady state current with a finite conductivity,

meaning that energy must be constantly added to the system. This energy is dissipated

into the gluon “bath”, which, in general, raises the temperature. At large Nc, however, this

effect is negligible. While the dissipated energy is O(Nc), there are O(N2
c ) gluons among

which to distribute this energy, so the temperature rise is only O(N−1
c ). But even ignoring

the dissipation, one still needs to subtract the kinetic energy of the current carriers, which

should not be taken as part of the budget at the phase transition.

Alternatively, we can get around this problem using a Maxwell-like construction for

the order parameter

c =
∂Fe

∂L

∣

∣

∣

∣

e,T

. (3.14)

In the parallel embedding c = 0 for any L. In the U embedding the dependence of c on L can

be determined numerically using (2.7) and (3.7). Note that here we need the full solution,

not just the asymptotic behavior. The result is qualitatively the same as in the zero field

case (figure 2). The transition occurs at the value of L such that the two bounded areas are

equal (see figure 3 for an illustration). We can then construct the phase diagram in the (T, e)

plane with fixed L by repeating this procedure for various values of e and T , and finding

the points which have the same critical L. The result, shown in figure 4, shows a first-order

insulator-conductor transition at nonzero temperature and background electric field. At

zero electric field this reduces to the chiral-symmetry breaking-restoration transition.

– 7 –
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Figure 3: Illustration of the Maxwell construction

Figure 4: Phase diagram at nonzero temperature and electric field in the deconfining background

(L = 1)

3.1.1 Conductivity at finite density

The conductivity computed in (3.11) is for the vacuum at a finite temperature. It has

two contributions corresponding to quantum and thermal pair-creation of quarks and anti-

quarks. The introduction of a finite charge density should also contribute to the conductiv-

ity. We can compute this by generalizing our analysis in the parallel embedding to the finite

density case. At nonzero density there is a non-trivial time-component of the gauge field

a0(u), and the associated constant of the motion is the dimensionless baryon number charge

density d. The dimensionful charge density is D = (2πα′N/V4)d. The 8-brane action is3

S = N
∫

duu4

√

(

f(u)(x′
4)

2 +
1

u3

)(

1 − e2

f(u)u3

)

+
f(u)(a′1)

2

u3
− (a′0)

2

u3
. (3.15)

In terms of the current and density, the action of the parallel embedding becomes

S|| = N
∫ ∞

uT

duu5/2

√

√

√

√

f(u) − e2

u3

f(u) − j2−f(u)d2

u5

. (3.16)

3There is also CS term of the form
R

a0a
′

1(∂2a3 − ∂3a2). However this can be consistently set zero by

the equations of motion since a0 and a1 are assumed to be independent of x2 and x3.

– 8 –
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The condition for reality now gives

j = e

[

(

e2 + u3
T

)2/3
+

d2

e2 + u3
T

]1/2

, (3.17)

and the conductivity is therefore

σ =
(2πα′)2N

V4

[

(

e2 + u3
T

)2/3
+

d2

e2 + u3
T

]1/2

=
NfNcλT 2

27π

[

(

1 + ẽ2
)2/3

+
d̃2

1 + ẽ2

]1/2

, (3.18)

where we have defined a new dimensionless (with appropriate factors of R, which in our

units is 1) variable d̃,

d̃ ≡ d

u
5/2
T

=
729

8πNfNc

D

λ2T 5
. (3.19)

At zero charge density this reduces to the vacuum result (3.11).

3.2 Conductivity and the Kubo formula

The electrical conductivity is an example of a transport coefficient that describes the re-

sponse of a thermodynamic system to a disturbance which takes it out of equilibrium. For

a small disturbance, i.e. near equilibrium, transport coefficients can be related to real-time

correlation functions at equlibrium via Kubo formulas. The electrical conductivity near

equilibrium is related to the current-current correlator [16],

σ = lim
k0→0

1

4T
Tr C<

µν(k0 = |k|) , (3.20)

where

C<
µν(k) =

∫

d4x e−ik·x〈Jµ(0)Jν(x)〉 . (3.21)

The correlator can in turn be computed at strong coupling using the Lorentzian AdS/CFT

prescription of [17].4 It is therefore interesting to compare the result of this computation

with the direct computation of the conductivity in the previous section. Since the Kubo

formula gives the conductivity near equilibrium, one should compare the result with the

zero electric field limit of (3.18).

The current-current correlator for light-like momenta has been analyzed in the Sakai-

Sugimoto model at both finite temperature and density in [18]. In particular the high-

temperature, or equivalently low frequency, behavior was found to be5

lim
k0→0

TrC<(k0 = |k|) =
2(2Nf )NcλT 3

27π

√

1 + d̃2 , (3.22)

4This prescription actually yields the retarded correlator CR
µν(k) = i

R

d4x e−ik·xθ(x0)〈[Jµ(0), Jν(x)]〉,

which is related to the one above by C<
µν(k) = 2Im CR

µν(k)/(e−k0/T − 1).
5Our definition of λ is different than in [18]: λhere = 4πλthere. Our d̃ is exactly their C̃.
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leading to a conductivity

σ =
NfNcλT 2

27π

√

1 + D̃2 , (3.23)

in perfect agreement with the zero field limit of (3.18).

3.3 Confined phase

For T < 1/(2πR4) the confining background dominates, and the 8-brane action with the

background gauge field is

S = N
∫

duu4

√

(

f(u)(x′
4)

2 +
1

f(u)u3

)(

1 − e2

u3

)

+
(a′1)

2

u3

= N
∫

duu4

√

(

f(u)x′
4
2 +

1

f(u)u3

)(

1 − e2

u3

)(

1 − j2

u5

)−1

. (3.24)

At zero field the only possible embedding in the confined phase was the U embedding.

However as we increase the electric field we encounter a puzzle. As in the deconfined

phase, the U embedding solution at a fixed L ceases to exist above a certain value of the

field. To see this we again study the behavior of L as a function of c. The U embedding

with j = 0 satisfies

x′
4(u) =

1

u3/2f(u)





u8f(u)
(

1 − e2

u3

)

u8
0f(u0)

(

1 − e2

u3
0

) − 1





−1/2

, (3.25)

and

c = u4
0

√

f(u0)

(

1 − e2

u3
0

)

. (3.26)

There are two cases to consider. For e2 < u3
KK, L(c) decreases monotonically from L(0) =

πR4 (the anti-podal embedding) to zero as c → ∞ (figure 5a). For e2 > u3
KK the asymptotic

behavior of L(c) is the same as in the deconfined phase (figure 5b), implying a maximal L for

a given e, or alternatively a maximal e for a given L. This maximal value therefore satisfies

u3
KK < e2

max < u3
0. The U embedding exists only for e < emax, and its action is given by

SU = N
∫ ∞

u0

du
u5/2

√

f(u)

√

1 − e2

u3



1 −
u8

0f(u0)
(

1 − e2

u3
0

)

u8f(u)
(

1 − e2

u3

)





−1/2

. (3.27)

The question is what happens when e > emax? There must exist a second embedding

that takes over before reaching the maximal electric field. In the deconfined background this

was the current-carrying parallel embedding, and we observed a first-order phase transition

at e < emax. We therefore propose a new kind of 8-brane embedding in the confining

background, which is analogous to the parallel embedding in the deconfining background.
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Figure 5: L vs. c in the confined phase (a) e < u
3/2

KK
(b) e > u

3/2

KK

Figure 6: The conducting V embedding in the confining background

The 8-brane and anti-8-brane follow parallel radial geodesics and connect at u = uKK

(figure 6). In this “V-shaped” embedding x′
4(u) = 0 (and therefore c = 0) except at the

tip, where there is a cusp (unless we are in the anti-podal embedding, which is smooth).

Away from uKK this is clearly a solution. Its action is given by

SV = N
∫ ∞

uKK

du
u5/2

√

f(u)

√

√

√

√

1 − e2

u3

1 − j2

u5

. (3.28)

It follows from reality of the action that if e2 > u3
KK there must be a current given by

j = e5/3. This embedding is therefore a conductor, with a conductivity

σ =
(2πα′)2N

V4
e2/3 =

NfNc

12π7/3
λ1/3E2/3 . (3.29)

This proposal raises two questions. The first has to do with stability of the cusp

singularity at the tip, and the second with the identification of the current carriers. In the

deconfined parallel embedding the current is carried by fundamental strings, namely quarks

and anti-quarks. The only charged objects in the confined phase are baryons, so the current

can only be carried by baryons and anti-baryons, namely by 4-branes (and anti-4-branes)

wrapped on the S4. Indeed, this is precisely what we need to source the 5d magnetic

– 11 –
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Figure 7: Electric phase diagram in the confined phase (a) fixed uKK = 0.5 (b) fixed L = 1. In

(a) the dashed lines illustrate that for e = u
3/2

KK
∼ 0.35 the critical L = πR4 ∼ 3.

field a′1(u) dual to the boundary current j. This is similar to the situation at nonzero

density [8], where a uniform distribution of 4-branes was used to source the 5d electric field

a′0(u) dual to the baryon number density. In that case the 4-branes created a cusp in the

8-brane embedding. In the present case the current corresponds to a uniform distribution

of 4-branes and anti-4-branes (since the total charge density vanishes), located at the cusp,

and moving at a constant velocity along x1. To understand whether this configuration

is stable we need to understand the forces at the cusp. In the nonzero density case the

upward force due to the 8-brane was balanced against the downward force of the 4-branes.

In this case however the 4-branes are at the bottom of the space, and it is not clear how

the balance comes about. Higher derivative corrections may also be relevant. We leave

this as an open question.

Assuming this is a valid solution, we can construct the phase diagram using the same

method as in the deconfined phase. In this case we can either fix uKK and vary L and e, or

fix L and vary uKK and e. The two results are shown in figure 7. From the first diagram we

see that for e2 < u3
KK the U embedding dominates at all values of L, and that for e2 ≥ u3

KK

there is a first-order transition to the conducting V embedding at a critical L that starts

at πR4 (the anti-podal embedding) and decreases with e.

The second diagram also provides some interesting insight. First, we note that, for a

fixed L, the critical electric field in the limit uKK → 0 in figure 7b is exactly the same as

the critical field in the deconfined phase in the limit T → 0 (as seen in figure 4). This

is because both cases are then essentially equivalent to the non-compact model at zero

temperature. Second, by comparing the phase diagrams in the confined and deconfined

phases at the confinement/deconfinement transition uKK = uT , it can be seen that if we

start in the confined conducting phase (V embedding) and raise the temperature above

the deconfinement temperature we end up in the deconfined conducting phase (parallel

embedding). In this transition the conductivity jumps from (3.29) to (3.11).

3.4 Electric susceptibility

In both the confined and deconfined phases there is an insulating phase (U embedding) in
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Figure 8: Electric susceptibility in the insulating phase of the (a) confined phase, (b) deconfined

phase (the dashed line shows the critical field for the insulator/conductor transition).

which the current vanishes. These phases exhibit an electric polarization and susceptibility,

which are defined thermodynamically by

p = −∂Fe

∂e
, χe = −∂2Fe

∂e2
. (3.30)

In the holographic prescription the free energy is divergent, and requires a counterterm

proportional to e2. The susceptibility therefore requires a counterterm independent of e.

A physically motivated scheme is to require the susceptibility to vanish at zero field, in

other words

χe(e) = −∂2Fe

∂e2
+

∂2Fe

∂e2

∣

∣

∣

∣

e=0

. (3.31)

This is a measure of the nonlinearity of the vacuum in this model. The results are presented

in figure 8.

4. Magnetic field

For an external magnetic field H our ansatz is simply

Â2(x1) = Hx1 . (4.1)

There will be no current and therefore no u dependence. Our main objective here is

to determine the effect of the background magnetic field on the critical temperature for

chiral-symmetry restoration in the deconfined phase. We will also compute the magnetic

susceptibility of the vacuum in both the confined and deconfined phases.

4.1 Deconfined phase

We start again in the deconfined phase. The 8-brane action in the magnetic field back-

ground is given by

S = N
∫

duu4

√

(

f(u)x′
4
2 +

1

u3

)(

1 +
h2

u3

)

, (4.2)
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Figure 9: (a) Our phase diagram with a magnetic field (b) analogous phase diagram in the D3-D7

model (reprinted from [14] with the authors’ permission).

where h ≡ 2πα′H. The chiral symmetry breaking U embedding now satisfies

x′
4(u) =

1

u3/2
√

f(u)





u8
(

f(u) + h2

u3

)

u8
0

(

f(u0) + h2

u3
0

) − 1





−1/2

, (4.3)

and has an action

SU = N
∫ ∞

u0

duu5/2

√

1 +
h2

u3f(u)



1 −
u8

0

(

f(u0) + h2

u3
0

)

u8
(

f(u) + h2

u3

)





−1/2

. (4.4)

In the chiral-symmetric parallel embedding x′
4(u) = 0, and the action is

S|| = N
∫ ∞

uT

duu
√

u3 + h2 . (4.5)

The actions of the embeddings, which define the magnetic free energies Fm(L, T, h), are

divergent, but the difference is finite. The resulting phase diagram (for a fixed value of

L) is shown in figure 9a. Note that unlike the electric field case, here both embeddings

describe equilibrium states, so we can compare the actions directly.

We observe that the temperature at which chiral symmetry is restored increases with

the background magnetic field, and approaches a finite value in the limit of an infinite field.

This means that above some nonzero temperature chiral symmetry is always restored. A

similar increase in the critical temperature for the phase transition in the D3-D7 model

was observed in [13, 14], but there is a crucial difference with our result. In the D3-D7

model the critical temperature diverges at a finite value of the magnetic field, which means

that there is no phase transition for magnetic fields larger than this value (figure 9b). It is

ammusing to speculate whether this can be tested in real QCD, either experimentally or

on the lattice.
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Figure 10: Magnetic susceptibility: (a) confined, broken chiral symmetry (b) deconfined, broken

chiral symmetry (c) deconfined, restored chiral symmetry

4.2 Confined phase

In the confined phase the 8-brane action is

S = N
∫

duu4

√

(

f(u)x′
4
2 +

1

f(u)u3

)(

1 +
h2

u3

)

. (4.6)

The U embedding is basically the same as in the electric case, (3.25) and (3.26), with e2

replaced by −h2. However, the sign difference guarantees that this solution is the only one

and that it exists for all values of L and h. The action of the solution can also be read off

from the electric case (3.27) with the above replacement,

SU = N
∫ ∞

u0

du
u5/2

√

f(u)

√

1 +
h2

u3



1 −
u8

0f(u0)
(

1 + h2

u3
0

)

u8f(u)
(

1 + h2

u3

)





−1/2

. (4.7)

4.3 Magnetic susceptibility

The magnetization and magnetic susceptibility are defined thermodynamically by

m = −∂Fm

∂h
, χm = −∂2Fm

∂h2
. (4.8)

We can compute the deviation from linearity by regularizing the susceptibility as in the

electric case,

χm(h) = −∂2Fm

∂h2
+

∂2Fm

∂h2

∣

∣

∣

∣

h=0

. (4.9)

The results for all three phases are shown in figure 10.
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